
Pathological Behavior of SSDs and Application in

HPC Storage

Youngjae Kim1, Junghee Lee2, and Galen M. Shipman1

1Oak Ridge National Laboratory, 2Georgia Institute of Technology

{kimy1, gshipman}@ornl.gov, jlee35@ece.gatech.edu

Abstract—Unlike hard drives, flash devices use out-of-update
operations and require a garbage collection (GC) process to
reclaim invalid pages to create free blocks. The GC process is a
major cause of poor performance in SSDs. This GC process
results in the I/O performance of flash devices being highly
dependent on I/O workload characteristics, slowing down the
SSDs in particular for bursty, write dominant workloads. From
this work we not only empirically examine GC process using
real commercial-off-the-shelf (COTS) SSDs but also define the
pathological behavior of SSDs. In order to mitigate the SSD slow-
down due to GC process, we propose a preemptive GC (PGC)
scheme that gives a high priority to pending I/O requests in the
queue by preempting on-going GC process.

I. INTRODUCTION

Solid state disks (SSD), especially NAND Flash memory-
based SSDs, are a leading media in storage systems. Recently
several developments have been made to employ SSDs for
enterprise-scale and HPC storage systems. NAND Flash mem-
ory technology offers a number of benefits over conventional
hard disk drives (HDDs), such as lower power consumption,
lighter weight, higher resilience to external shocks, ability to
sustain hotter operating regimes, and lower I/O access times.
Thus, SSDs are being seriously considered as a replacement
of storage drive in back-end storage systems, however, there
are challenges that SSDs should overcome.
SSD performance is highly dependent on I/O access patterns

and SSD can suffer from high latency for bursty and write-
dominant workloads. Due to SSD’s out-of-update operations,
an SSD must clean stale data for providing free space.
This cleaning process, known as garbage collection, causes
unwanted delays in performing reads and writes that store
the same target space. Fragmentation caused by small random
writes increases the GC overhead. This overhead is directly
related to the frequency of copy operations for non-stale
data pages and block erase operations In particular, HPC file
systems are stressed with frequent writes, checkpointing and
journal updates. In an effort to study the benefits of using
SSDs for HPC systems, we characterized the workloads and
modelled the I/0 access patterns on an a HDD based HPC
storage platform - Spider.
Spider is a center-wide parallel file system that connects file

and storage systems for Jaguar XT4, the Cray XT5 simulation
platform at Oak Ridge National Laboratory (ORNL). The Spi-
der storage system has been provisioned with 13,440 hard disk
drives to support over 2 petaflops of computing infrastructure.
Currently, Spider has employed a RAID (Redundant Array of
Independent Disk) level 6 scheme in order to fulfill the need
to provide a highly reliable and available storage system, as
well as high I/O throughput.
In our study of I/O workload characterization of the Spider

storage, we observed the peak read and write bandwidths can
reach around 90GB/s and 65GB/s (from half of our total
capacity) respectively [1]. Their bandwidth distributions are
representative of a heavy long-tail distribution, and we saw
these trends are observed across all 48 RAID controllers.
Moreover, I/O requests to the RAID controllers are bursty and
show heavy-tail distribution in their inter-arrival times.

SSDs are proven to have better throughput and access
latency than HDDs, however, SSDs should be designed such
that they can provide sustained bandwidth in spite of GCs.
In this work, we (i) identify such a pathological behavior
of SSDs from empirical experiments using commercial SSDs
and (ii) provide a novel solution to mitigate the performance
degradation of SSDs due to GCs.

II. PATHOLOGICAL BEHAVIOR OF SSDS

One of the main shortcomings of SSDs is the slowdown
during the garbage collection (GC) process that is hastened
by small, random writes. This slowdown can even further
impact future incoming requests, we term this “pathological
behavior” of an SSD by delaying I/O request services [2]. In
order to empirically observe the effect of GC, we performed
a series of experiments using various commercially-off-the-
shelf (COTS) SSDs. All experiments were performed on a
single server with 24 GB of RAM and an Intel Xeon Quad
Core 2.93GHz CPU. The operating system was Linux with
a Lustre-patched 2.6.18-128 kernel. The noop I/O scheduler
with FIFO queueing was used.

TABLE I
CHARACTERISTICS OF SSDS USED IN OUR EXPERIMENTS.

Label SSD(A) SSD(B)

Company Super-Talent Intel

Model FTM28GX25H SSDSA2SH064G101

Type MLC SLC

Capacity (GB) 120 64

Erase (#) 10-100K 100K-1M

Power (W) 1-2 1-2

We examined two representative SSDs that are detailed in
Table I. We selected the Super Talent 128 GB SSD as a
representative of multi-level cell (MLC) SSDs and the Intel
64 GB SSD as a representative of single-level cell (SLC)
SSDs. We denote the SuperTalent MLC, and Intel SLC devices
as SSD(A), and SSD(B) in the remainder of this study,
respectively. We examined the I/O bandwidth of individual
COTS SSDs for write-dominant workloads. To measure the
I/O performance we used a benchmark that exploits the libaio
asynchronous I/O library on Linux.

A. Performance Anomaly on SSDs

In Figure 1(a)(b), we examine the large sequential I/O
bandwidth responses of individual SSDs in time series. We
varied the percentage of writes in workloads between 20% and
80% in increasing steps of 20%. We measured I/O bandwidth
in one second intervals.
For write-dominant workloads, we observe that the band-

width fluctuates widely due to excessive GCs . For example,
the SSD(A) I/O throughput drops below 180MB/s at the 6th

and 7th seconds under an 80% write workload. However,
I/O throughput drops below 160MB/s for the 8th second and
then drops further to 130MB/s in the next 3 seconds. Overall
SSD(B) shows higher bandwidth than SSD(A). Also, SSD(B)
has a higher variance than SSD(A). For instance, SSD B’s
I/O throughput reached 240MB/s at the peak and dropped to
140MB/s (at 25th to 27th seconds). As we increased the amount

 120

 140

 160

 180

 200

 220

 240

 0 10 20 30 40 50 60

M
B

/s

Time (Sec)

1MB Sequential

80% Write 20% Read
60% Write 40% Read

40% Write 60% Read
20% Write 80% Read

(a) SSD(A)

 120

 140

 160

 180

 200

 220

 240

 260

 280

 0 10 20 30 40 50 60

M
B

/s

Time (Sec)

1MB Sequential

80% Write 20% Read
60% Write 40% Read

40% Write 60% Read
20% Write 80% Read

(b) SSD(B)

Fig. 1. Pathological behavior of single SSDs.

of reads in the workloads from 20% to 80%, we observed that
SSD(A)’s and B’s I/O throughput increased around 50% and
18%, respectively.

−5 −4 −3 −2 −1 0 1 2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

qd=64

qd=8

−3 −2 −1 0 1 2

0
.0

0
.5

1
.0

1
.5

2
.0

qd=64

qd=8

(a) SSD(A) (b) SSD(B)

Fig. 2. Variability of bandwidth. qd denotes queue depth. High qd
means requests are bursty and intense in their arrival rate.

B. Performance Variability of SSDs:

Figure 2 illustrates the impact of GC on I/O bandwidth.
In order to compare the bandwidth variability of individual
SSDs for different arrival rates of requests, we measured I/O
bandwidth for 512KB write requests by varying I/O queue
depth (QD). We normalized the measured bandwidth with a
Z-transform and plotted density functions with curve-fitting
techniques. We observed that the performance variability in-
creases with respect to the arrival rate of requests. This can be
interpreted as for a workload with bursty arrival I/O request
pattern, SSD is not able to guarantee bandwidth and it can be
attributed to the GC process.

III. MITIGATING SSD SLOW-DOWN DUE TO GC PROCESS

In order to not stop servicing incoming requests to SSDs, we
allow preemption of GC, which incurs an extra unnecessary
context overhead. Thus, we design and develop an efficient
preemptive GC scheme, which can permit GC preemption at
certain points.
A typical garbage collection process is composed of a series

of page read and write operations. Once a block is selected,
victim block for GC, all the valid pages on the block should be
moved into a free block and then, the victim block is erased.
The moving operation of a valid page is divided into a page
read, data transfer in the page, page write, and finally, meta-
data update operations. If the free block is in the same plane to
which the valid page moves, then, the data transfer operation

could be omitted. We identify two possible preemption points
among the series of operations related to page movement
during GC – within a page movement, and between a series of
page movements. With this identification of preemption points,
we insert the incoming requests (that arrive during GC process)
comprised of page read and write operations similar to the
operations during GC appropriately without page read-after-
write (RAW) dependency violation.
We can further optimize the performance by merging incom-

ing page read and write requests into GC process, effectively
folding duplicate page operations into one. If incoming page
requests matches a page that is touched by GC then, it is
combined to one page requests. Moreover, we also discuss
pipelining technique of incoming requests with GC. If the
incoming request is on the page different from the page
operation of GC then they can be pipelined, reducing the
response time of the incoming request.

IV. EXPERIMENTAL RESULTS

We developed our preemptive and GC optimization schemes
on Microsoft SSD simulator and simulated a large block 32GB
NAND flash based SSD. We used four commercial I/O traces
– Financial, Cello99, TPC-H, and OpenMail.

 0

 0.2

 0.4

 0.6

 0.8

 1

Financial

C
ello

TPC
-H

O
penM

ail

N
o
rm

a
liz

e
d
 s

ta
n
d
a
rd

 d
e
v
ia

ti
o
n

NPGC
PGC

PGC+Pipeline

 0

 0.2

 0.4

 0.6

 0.8

 1

Financial

C
ello

TPC
-H

O
penM

ail

N
o
rm

a
liz

e
d
 m

a
x
im

u
m

 r
e
s
p
o
n
s
e
 t
im

e

NPGC
PGC

PGC+Pipeline

(a) Variance of Response Times (b) Maximum Response Time

Fig. 3. Performance improvements by preemptive garbage collector for
realistic server workloads. In legends, NPGC, PGC, and PGC+Pipeline

respectively denote non-preemptive GC, preemptive GC, and preemptive GC
with pipelining technique.

In Figure 3, we present the performance (in terms of system
response time) and its variance. Figure 3(a) shows a big
improvement for response time variance. PGC reduces the
performance variability by 49.82% and 83.30% for each of
workloads. In addition to the improvement of performance
variance, from Figure 3(b) we observe that PGC can further
reduce the maximum response time of NPGC by 77.59% and
84.09% for Financial and Cello traces.

V. CONCLUSION

From this work, we argue that SSDs possess bandwidth vari-
ability problems due to non-preemptive ongoing GC process,
which can severely slow down SSDs. The details of this study
can be found in [2], [3].

REFERENCES

[1] Y. Kim, R. Gunasekaran, G. M. Shipman, D. Dillow, Z. Zhang, and B. W.
Settlemyer, “Workload characterization of a leadership class storage,” in
5th Petascale Data Storage Workshop Supercomputing ’10 (PDSW’10),
November 2011.

[2] Y. Kim, S. Oral, D. A. Dillow, F. Wang, D. Fuller, S. Poole, and G. M.
Shipman, “An empirical study of redundant array of independent solid-
state drives (RAIS),” in Technical Report, ORNL/TM-2010/61, Oak Ridge

National Laboratory, National Center for Computational Sciences, March
2010.

[3] J. Lee, Y. Kim, G. M. Shipman, S. Oral, J. Kim, and F. Wang, “A semi-
preemptive garbage collector for solid state drives,” in IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS)
(To Appear), April 2011.

